Efficient Numerical Methods for Pricing American Options Under Stochastic Volatility
نویسندگان
چکیده
Five numerical methods for pricing American put options under Heston’s stochastic volatility model are described and compared. The option prices are obtained as the solution of a two-dimensional parabolic partial differential inequality. A finite difference discretization on nonuniform grids leading to linear complementarity problems with M -matrices is proposed. The projected SOR, a projected multigrid method, an operator splitting method, a penalty method, and a componentwise splitting method are considered. The last one is a direct method while all other methods are iterative. The resulting systems of linear equations in the operator splitting method and in the penalty method are solved using a multigrid method. The projected multigrid method and the componentwise splitting method lead to a sequence of linear complementarity problems with one-dimensional differential operators which are solved using the Brennan and Schwartz algorithm. The numerical experiments compare the accuracy and speed of the considered methods. The accuracies of all methods appear to be similar. Thus, the additional approximations made in the operator splitting method, in the penalty method, and in the componentwise splitting method do not increase the error essentially. The componentwise splitting method is the fastest one. All multigrid based methods have similar rapid grid independent convergence rates. They are from two to four times slower that the componentwise splitting method. On the coarsest grid the speed of the projected SOR is comparable with the multigrid methods while on finer grids it is several times slower.
منابع مشابه
Option pricing under the double stochastic volatility with double jump model
In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...
متن کاملPricing American Options under Stochastic Volatility : A New Method Using
This paper presents a new numerical method for pricing American call options when the volatility of the price of the underlying stock is stochastic. By exploiting a log-linear relationship of the optimal exercise boundary with respect to volatility changes, we derive an integral representation of an American call price and the early exercise premium which holds under stochastic volatility. This...
متن کاملComponentwise Splitting Methods for Pricing American Options Under Stochastic Volatility
Efficient numerical methods for pricing American options using Heston’s stochastic volatility model is proposed. Based on this model the price of a European option can be obtained by solving a two-dimensional parabolic partial differential equation. For an American option the early exercise possibility leads to a lower bound for the price of the option. This price can be computed by solving a l...
متن کاملA Finite-element Approach for Pricing Swing Options under Stochastic Volatility
Option pricing plays an important role in financial,energy, and commodity markets. The Black-Scholes model is an indispensable framework for the option pricing. This thesis studies the pricing of a swing option under stochastic volatility. A swing option is an American-style contract with multiple exercise rights. As such, it is an optimal multiplestopping time problem. In this dissertation, we...
متن کاملOperator splitting methods for pricing American options under stochastic volatility
We consider the numerical pricing of American options under Heston’s stochastic volatility model. The price is given by a linear complementarity problem with a two-dimensional parabolic partial differential operator. We propose operator splitting methods for performing time stepping after a finite difference space discretization. The idea is to decouple the treatment of the early exercise const...
متن کاملOperator Splitting Methods for Pricing American Options with Stochastic Volatility
Stochastic volatility models lead to more realistic option prices than the Black-Scholes model which uses a constant volatility. Based on such models a two-dimensional parabolic partial differential equation can derived for option prices. Due to the early exercise possibility of American option contracts the arising pricing problems are free boundary problems. In this paper we consider the nume...
متن کامل